
One-Dimensional Partitioning for

Heterogeneous Systems:

Theory and Practice �

Ali Pınar a,1, E. Kartal Tabak b and Cevdet Aykanat b,2

aComputational Research Division. Lawrence Berkeley National Laboratory

bDepartment of Computer Engineering, Bilkent University

Abstract

We study the problem of one-dimensional partitioning of nonuniform workload ar-

rays with optimal load balancing for heterogeneous systems. We look at two cases:

chain-on-chain partitioning, where the order of the processors is specified, and chain

partitioning, where processor permutation is allowed. We present polynomial time

algorithms to solve the chain-on-chain partitioning problem optimally, while we

prove that the chain partitioning problem is NP-complete. Our empirical studies

show that our proposed exact algorithms produce substantially better results than

heuristics while the solution times remain comparable.

Key words: parallel computing, one-dimensional partitioning, load balancing,

chain-on-chain partitioning, dynamic programming, parametric search

Preprint submitted to Journal of Parallel and Distributed Computing18 June 2008



1 Introduction

In many applications of parallel computing, load balancing is achieved by

mapping a possibly multi-dimensional computational domain down to a one-

dimensional (1D) array, and then partitioning this array into parts with equal

weights. Space filling curves are commonly used to map the higher dimen-

sional domain to a 1D workload array to preserve locality and minimize com-

munication overhead after partitioning [6,7,10,15]. Similarly, processors can

be mapped to a 1D array so that communication is relatively faster between

close processors in this processor chain [11]. This eases mapping for compu-

tational domains and improves efficiency of applications. The load balancing

problem for these applications can be modeled as the chain-on-chain partition-

ing (CCP) problem, where we map a chain of tasks onto a chain of processors.

Formally, the objective of the CCP problem is to find a sequence of P − 1

separators to divide a chain of N tasks with associated computational weights

into P consecutive parts to minimize maximum load among processors.

In our earlier work [17], we studied the CCP problem for homogenous systems,

where all processors have identical computational powers. We have surveyed

the rich literature on this problem, proposed novel methods as well as im-

� This work is partially supported by The Scientific and Technological Research

Council of Turkey (TÜBİTAK) under project EEEAG-106E069.
Email addresses: apinar@lbl.gov (Ali Pınar), tabak@cs.bilkent.edu.tr (E.

Kartal Tabak), aykanat@cs.bilkent.edu.tr (Cevdet Aykanat).
1 Supported by the Director, Office of Science, Division of Mathematical, Infor-

mation, and Computational Sciences of U.S. Department of Energy under contract

DE-AC03-76SF00098.
2 Corresponding author.

2



provements on existing methods, and studied how these algorithms can be

implemented efficiently to be effective in practice. In this work, we investigate

how these techniques can be generalized for heterogeneous systems, where

processors have varying computational powers. Two distinct problems arise in

partitioning chains for heterogeneous systems. The first problem is the CCP

problem, where a chain of tasks is to be mapped onto a chain of processors,

i.e., the pth task subchain in a partition is assigned to the pth processor. The

second problem is the chain partitioning (CP) problem, where a chain of tasks

is to be mapped onto a set, as opposed to a chain, of processors, i.e., processors

can be permuted for subchain assignments. For brevity, the CCP problem for

homogenous systems and heterogeneous systems will be referred to as the ho-

mogenous CCP problem and heterogeneous CCP problem, respectively. The

CP problem refers to the chain partitioning problem for heterogeneous sys-

tems, since it has no counterpart for homogenous systems.

In this article, we show that the heterogeneous CCP problem can be solved in

polynomial time by enhancing the exact algorithms proposed for the solution

of the homogenous CCP problem [17]. We present how these exact algorithms

for homogenous systems can be enhanced for heterogeneous systems and im-

plemented efficiently for runtime performance. We also present how the heuris-

tics widely used for the solution of homogenous CCP problem can be adapted

for heterogeneous systems. We present the implementation details and pseu-

docodes for the exact algorithms and heuristics for clarity and reproducibil-

ity. Our experiments with workload arrays coming from image-space-parallel

volume rendering and row-parallel sparse matrix vector multiplication appli-

cations show that our proposed exact algorithms produce substantially better

results than the heuristics while the solution times remain comparable. On av-

3



erage, optimal solutions provide 4.9 and 8.7 times better load imbalance than

heuristics for 128-way partitionings of volume rendering and sparse matrix

datasets, respectively. On average, the time it takes to compute an optimal

solution is less than 2.20 times the time it takes to compute an approximation

using heuristics for 128 processors, and thus the preprocessing times can be

easily compensated by the improved efficiency of the subsequent computation

even for a few iterations.

The CP problem on the other hand, is NP-complete as we prove in this paper.

Our proof uses a pseudo-polynomial reduction from the 3-Partition problem,

which is known to be NP-complete in the strong sense [8]. Our empirical

studies showed that processor ordering has a very limited effect on the solution

quality, and an optimal CCP solution on a random processing ordering serves

as an effective CP heuristic.

The remainder of this paper is organized as follows. Table 1 summarizes im-

portant symbols used throughout the paper. Section 2 introduces the het-

erogeneous CCP problem. In Section 3, we summarize the solution methods

for homogenous CCP. In Section 4, we discuss how solution methods for ho-

mogenous systems can be enhanced to solve the heterogeneous CCP problem.

In Section 5, we discuss the CP problem, prove that it is NP-Complete. We

present the results of our empirical studies with the proposed methods in

Section 6, and finally, we conclude with Section 7.

2 Chain-on-chain (CCP) Problem for Heterogeneous Systems

In the heterogeneous CCP problem, a computational problem, which is de-

composed into a chain T = 〈t1, t2, . . . , tN〉 of N tasks with associated positive

computational weights W = 〈w1, w2, . . . , wN〉 is to be mapped onto a pro-

4



Table 1
The summary of important abbreviations and symbols

Notation Explanation

N number of tasks

T task chain, i.e., T = 〈t1, t2, . . . , tN 〉
ti ith task in the task chain

Ti,j task subchain of tasks from ti upto tj , i.e., Ti,j = 〈ti, ti+1, . . . , tj〉
wi computational load of task ti

wmax maximum computational load among all tasks

wavg average computational load of all tasks

wmin minimum computational load of all tasks

Wi,j total computational load of task subchain Ti,j

Wtot total computational load, i.e., Wtot = W1,N

P number of processors

P processor chain, i.e., P = 〈P1,P2, . . . ,PP 〉 in the CCP problem

processor set, i.e., P = {P1,P2, . . . ,PP } in the CP problem

Pp pth processor in the processor chain

Pq,r processor subchain from Pq upto Pr , i.e., Pq,r = 〈Pq ,Pq+1, . . . ,Pr〉
ep execution speed of processor Pp

Eq,r total execution speed of processor subchain Pq,r

Etot total execution speed of all processors, i.e., Etot = E1,P

B∗ ideal bottleneck value, achieved when all processors have load in proportion to their speed

UB upper bound on the value of an optimal solution

LB lower bound on the value of an optimal solution

sp index of the last task assigned to the pth processor.

lg x base-2 logarithm of x, i.e., lg x = log2 x.

cessor chain P = 〈P1,P2, . . . ,PP 〉 of P processors with associated execution

speeds E = 〈e1, e2, . . . , eP 〉. The execution time of task ti on processor Pp is

wi/ep. For clarity, we note that there are no precedence constraints among the

tasks in the chain.

A task subchain Ti,j = 〈ti, ti+1, . . . , tj〉 is defined as a subset of contiguous tasks.

Note that Ti,j defines an empty task subchain when i > j. The computational

weight of Ti,j is Wi,j =
∑

i≤h≤j wh. A partition Π should map contiguous task

subchains to contiguous processors. Hence, a P -way partition of a task chain

with N tasks onto a processor chain with P processors is described by a

sequence Π = 〈s0, s1, . . . , sP 〉 of P +1 separator indices, where s0 = 0 ≤ s1 ≤

· · · ≤ sP = N . Here, sp denotes the index of the last task of the pth part so

that processor Pp receives the task subchain Tsp−1+1,sp with load Wsp−1+1,sp/ep.

5



The cost C(Π) of a partition Π is determined by the maximum processor load

among all processors, i.e.,

C(Π) = max
1≤p≤P

{
Wsp−1+1,sp

ep

}
(1)

This C(Π) value of a partition is called its bottleneck value, and the processor

defining it is called the bottleneck processor. The CCP problem is to find a

partition Πopt that minimizes the bottleneck value C(Πopt).

Similar to the task subchain, a processor subchain Pq,r = 〈Pq,Pq+1, . . . ,Pr〉 is

defined as a subset of contiguous processors. Note that Pq,r defines an empty

processor subchain when q > r. The computational speed of Pq,r is Eq,r =

∑
q≤p≤r ep.

The ideal bottleneck value B∗ is defined as

B∗ =
Wtot

Etot

, (2)

where Etot is the sum of all processor speeds and Wtot is the total task weight;

i.e., Etot = E1,P and Wtot = W1,N . Note that B∗ can only be achieved when all

processors are equally loaded, so it constitutes a lower bound on the achievable

bottleneck values, i.e., B∗ ≤ C(Πopt).

3 CCP Algorithms for Homogenous Systems

The homogenous CCP problem can be considered as a special case of the

heterogeneous CCP problem, where the processors are assumed to have equal

speed, i.e., ep = 1 for all p. Here, we review the CCP algorithms for homoge-

nous systems. A comprehensive review and presentation of homogenous CCP

algorithms are available in [17].

6



3.1 Heuristics

Possibly the most commonly used CCP heuristic is recursive bisection (RB),

a greedy algorithm. RB achieves P -way partitioning through lg P levels of

bisection steps. At each level, the workload array is divided evenly into two.

RB finds the optimal bisection at each level, but the sequence of optimal

bisections at each level may lead to a multi-way partition which is far away

from an optimal. Pınar and Aykanat [17] proved that RB produces partitions

with bottleneck values no greater than B∗+wmax(P − 1)/P .

Miguet and Pierson [13] proposed another heuristic that determines sp by

bipartitioning the task chain in proportion to the length of the respective

processor subchains. That is, sp is selected in such a way that W1,sp/W1,N is

as close to the ratio p/P as possible. Miguet and Pierson [13] prove that the

bottleneck value found by this heuristic has an upper bound of B∗+wmax.

These heuristics can be implemented in O(N+P lg N) time. The O(N) time

is due to prefix-sum operation on the tasks array, after which each separator

index can be found by a binary search on the prefix-summed array.

3.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the

CCP problem enable dynamic programming solutions. The overlapping sub-

problems are partitioning the first i tasks onto the first p processors, for all

possible i and p values. For the optimal substructure property, observe that

if the last processor is not the bottleneck processor in an optimal partition,

then the partitioning of the remaining tasks onto the first P − 1 processors

must be optimal. Hence, the recursive definition for the bottleneck value of an

7



optimal partition is

Bp
i = min

0≤j≤i

{
max

{
Bp−1

j , Wj+1,i

}}
(3)

Here, Bp
i denotes the optimal solution value for partitioning the first i tasks

onto the first p processors. In Eq. (3), searching for index j corresponds to

searching for separator sp−1 so that the remaining subchain Tj+1,i is assigned

to the last processor in an optimal partition. This definition defines a dynamic

programming table of size PN , and computing each entry takes O(N) time,

resulting in an O(N2P )-time algorithm. Choi and Narahari [3], and Manne

and Olstad [12] reduced the complexity of this scheme to O(NP ) and O((N−

P )P ), respectively. Pınar and Aykanat [17] presented enhancements to limit

the search space of each separator by exploiting upper and lower bounds on

the optimal solution value for better practical performance.

3.3 Parametric Search

Parametric search algorithms rely on two components: a probing operation

to determine if a solution exists whose bottleneck value is no greater than a

specified value, and a method to search the space of candidate values. The

probe algorithm can be computed in only O(P lg N) time by using binary

search on the prefix-summed workload array. Below, we summarize algorithms

to search the space of bottleneck values.

3.3.1 Nicol’s Algorithm

Nicol’s algorithm [14] exploits the fact that any candidate B value is equal

to the weight of a task subchain. A naive solution is to generate all subchain

weights, sort them, and then use binary search to find the minimum value for

which a probe succeeds. Nicol’s algorithm efficiently searches for this subchain

by considering each processor in order as a candidate bottleneck processor. For

8



each processor Pp, the algorithm does a binary search for the smallest index

that will make Pp the bottleneck processor. With the O(P lg N) cost of each

probing, Nicol’s algorithm runs in O(N+(P lg N)2) time.

Pınar and Aykanat [17] improved Nicol’s algorithm by utilizing the following

simple facts. If the probe function succeeds (fails) for some B, then probe

function will succeed (fail) for any B′ ≥ (≤) B. Therefore by keeping the

smallest B that succeeded and the largest B that failed, unnecessary probing

is eliminated, which drastically improves runtime performance [17].

3.3.2 Bidding Algorithm

The bidding algorithm [17,16] starts with a lower bound and proceeds by

gradually increasing this bound until a feasible solution value is reached. The

increments are chosen to be minimal so that the first feasible bottleneck value

is optimal. Consider the partition generated by a failed probe call that loads

the first P−1 processors maximally not to exceed the specified probe value. To

find the next bottleneck value, processors bid with the bottleneck value that

would add one more task to their domain, and the minimum bid among the

processors is chosen to be the next bottleneck value. The bidding algorithm

moves each one of the P separators for O(N) positions in the worst case, where

choosing the new bottleneck value takes O(lg P ) time using a priority queue.

This makes the complexity of the algorithm O(NP lg P ).

3.3.3 Bisection Algorithms

The bisection algorithm starts with a lower and an upper bound on the solution

value and uses binary search in this interval. If the solution value is known to be

an integer, then the bisection algorithm finds an optimal solution. Otherwise,

it is an ε-approximation algorithm, where ε is the user defined accuracy for

9



the solution. The bisection algorithm requires O(lg(wmax/ε)) probe calls, with

O(N+P lg N lg(wmax/ε)) overall complexity.

Pınar and Aykanat [17] enhanced the bisection algorithm by updating the

lower and upper bounds to realizable bottleneck values (subchain weights).

After a successful probe, the upper bound can be set to be the bottleneck value

of the partition generated by the probe function, and after a failed probe, the

lower bound can be set to be the smallest value that might succeed, as in the

bidding algorithm. These enhancements transform the bisection algorithm to

an exact algorithm, as opposed to an ε-approximation algorithm.

4 Proposed CCP Algorithms for Heterogeneous Systems

The algorithms we propose in this section extend the techniques for homoge-

nous CCP to heterogeneous CCP. All algorithms discussed in this section

require an initial prefix-sum operation on the task-weight arrayW for the effi-

ciency of subsequent subchain-weight computations. The prefix-sum operation

replaces the ith entryW[i] with the sum of the first i entries (
∑i

h=1 wh) so that

computational weight Wij of a task subchain Tij can be efficiently determined

as W[j]−W[i− 1] in O(1) time. In our discussions, W is used to refer to the

prefix-summed W array, and O(N) cost of this initial prefix-sum operation

is considered in the complexity analysis. Similarly, Ea,b can be computed in

O(1) time on a prefix-summed processor-speed array. In all algorithms, we

focus only on finding the optimal solution value, since an optimal solution can

be easily constructed, once the optimal solution value is known.

Unless otherwise stated, BINSEARCH represents a binary search that finds

the index to the element that is closest to the target value. There are variants

of BINSEARCH to find the index of the greatest element not greater than the

10



target value, and we will state whenever such variants are needed. BINSEARCH

takes four parameters: the array to search, the start and end indices of the

sub-array, and the target value. The range parameters are optional, and their

absence means that the search will be performed on the whole array.

4.1 Heuristics

We propose a heuristic, RB, based on the recursive bisection idea. During

each bisection, RB performs a two step process. First, it divides the current

processor chain Pp,r into two subchains Pp,q and Pq+1,r. Then, it divides the

current task chain Th,j into two subchains Th,i and Ti+1,j in proportion to the

computational powers of the respective processor subchains. That is, the task

separator index i is chosen such that the ratio Wh,i/Wi+1,j is as close to the

ratio Ep,q/Eq+1,r as possible. RB achieves optimal bisections at each level;

however, the quality of the overall partition may be far away from that of the

optimal solution.

We have investigated two metrics for bisecting the processor chain: chain

length and chain processing power. The chain length metric divides the cur-

rent processor chain Pp,r into two equal-length processor subchains, whereas

the chain processing power metric divides Pp,r into two equal-power subchains.

Since the first metric performed slightly better than the second one in our ex-

periments, we will only discuss the chain length metric here. The pseudocode

of the RB algorithm is given in Fig. 1, where the initial invocation takes its

parameters as (W, E , 1, P ) with s0 = 0 and sP = N . Note that sp−1 and sr are

already determined at higher levels of recursion. Wtot is the total weight of

current task subchain, and Wfirst is the weight for the first processor subchain

in proportion to its processing speed. We need to add W1,sp−1 to Wfirst to seek

11



RB (W, E , p, r)
if p = r then

return;
Wtot ←Wsp−1+1,sr ;
q ← (p + r − 1)/2;
Wfirst ←Wtot × Ep,q/Ep,r;
W ←Wfirst + W1,sp−1;
sq ←BINSEARCH(W, sp−1, sr,W );
RB(W, E , p, q);
RB(W, E , q + 1, r);

MP (W, N, E , P )
for p← 1 to P do

w ←W1,N × E1,p/E1,P ;
sp ←BINSRCH(W, sp−1, N,w);

Fig. 1. Heterogeneous CCP heuristics

sq in the prefix-summed W array.

We also propose a generalization of Miguet and Pierson’s heuristic, MP [13].

MP computes the separator index of each processor by considering that pro-

cessor as a division point for the whole processor chain. In our version, the

load assigned to the processor chain P1,p is set to be proportional to the com-

putational power E1,p of this subchain, as shown in Fig. 1.

Both RB and MP can be implemented in O(N+P lg N) time, where the O(N)

time is due to the initial prefix-sum operation on the task-weight array.

Below, we investigate the theoretical bounds on the quality of these two heuris-

tics. We assume P is a power of 2 for simplicity.

Lemma 4.1 BRB is upper bounded by B∗+wmax/emin − wmax/(Pemin).

Proof: We use induction, and the basis is easy to show for P = 2. For

the inductive step, assume the hypothesis holds for any number of processors

less than P . Consider the first bisection, where the processors are split into

two subchains, each containing P/2 processors. Let the total processing power

in the left subchain be Eleft. RB will distribute the workload array between

the left and right processor subchains as evenly as possible. There will be a

task ti such that the left processor subchain will weigh more than the right

12



subchain if ti is assigned to the left subchain, and vice versa. Without loss of

generality, assume that ti is assigned to the left subchain. In the worst case, ti

is the maximum weighted task, and the total task weight assigned to the left

subchain, Wleft, can be upper bounded by

Wleft ≤
(Wtot + wmax)Eleft

Etot
.

Using the inductive hypothesis, the bottleneck value among the processors of

the left processor subchain can be upper bounded as follows.

BRB ≤
Wleft

Eleft
+

wmax

emin
− wmax

eminP/2
≤ Wtot + wmax

Etot
+

wmax

emin
− wmax

eminP/2

= B∗ +
wmax

Etot
+

wmax

emin
− wmax

eminP/2
≤ B∗ +

wmax

eminP
+

wmax

emin
− wmax

eminP/2

= B∗ +
wmax

emin
− wmax

Pemin

The same bound applies to the right processor subchain directly by the in-

ductive hypothesis, since right processor subchain is already underloaded. �

Lemma 4.2 BMP is upper bounded by B∗ + wmax/emin.

Proof: Let the sequence 〈s0, s1, . . . , sP 〉 be the partition constructed by

MP. For a processor Pp, sp is chosen to be the separator that best divides P1,p

and Pp+1,P . Based on our discussion of bipartitioning quality in the proof of

Lemma 4.1, W1,sp is bounded by

E1,pB
∗ − wmax

2
≤W1,sp ≤ E1,pB

∗ +
wmax

2

So, the load of processor p is upper bounded by

W1,sp −W1,sp−1

ep

≤ E1,pB
∗ + wmax/2− E1,p−1B

∗ + wmax/2

ep

= B∗ +
wmax

ep
≤ B∗ +

wmax

emin �

13



4.2 Dynamic Programming

The overlapping subproblems and the optimal substructure properties of the

homogenous CCP can be extended to the heterogeneous CCP, and thus en-

abling dynamic programming solutions. The recursive definition for the bot-

tleneck value of an optimal partition can be derived as

Bp
i = min

0≤j≤i

{
max

{
Bp−1

j ,
Wj+1,i

ep

}}
(4)

for the heterogeneous case. As in the homogenous case, Bp
i denotes the optimal

solution value for partitioning the first i tasks onto the first p processors. This

definition results in an O(N2P )-time DP algorithm.

We generalize the observations of Choi and Narahari [3] to develop an O(NP )-

time algorithm for heterogeneous systems as follows. Their first observation

relies on the fact that the optimal position of the separator for partitioning

the first i tasks cannot be to the left of the optimal position for the first i− 1

tasks, i.e., jp
i ≥ jp

i−1. Their second observation is that we need to advance a

separator index only when the last part is overloaded and can stop when this is

no longer the case, i.e., Bp−1
j ≥Wj+1,i/ep. Then an optimal jp

i can be chosen to

correspond to the minimum of max{Bp−1
j , Wj+1,i/ep} and max{Bp−1

j−1 , Wj,i/ep}.

That is, the recursive definition becomes:

Bp
i = max

{
Bp−1

jp
i

,
Wjp

i +1,i

ep

}
, where jp

i = argmin
jp
i−1≤j≤i

{
max

{
Bp−1

j ,
Wj+1,i

ep

}}
.

It is clear that the search ranges of separators overlap at only one position,

and thus we can compute all Bp
i entries for 1≤ i≤N in only one pass over

the task subchain. This reduces the complexity of the algorithm to O(NP ).

Fig. 2(a) presents this algorithm.

14



DP (W, N, P, E)
for p← 1 to P do

B[p, 0]← 0;
for i← 1 to N do

B[1, i]← W1,i/e1;
for p← 2 to P do

j ← 0;
for i← 1 to N do

if Wj+1,i/ep ≤ B[p− 1, j] then
B[p, i]← B[p− 1, j];

else
repeat

j ← j + 1;
until Wj+1,i/ep ≤ B[p− 1, j] or j ≥ i;
if Wj,i/ep < B[p− 1, j] then

B[p, i]← Wj,i/ep;
j ← j − 1;

else
B[p, i]← B[p− 1, j];

return Bopt ← B[P,N ];

DP+ (W, N, E , P, SL, SH)
for p← 1 to P do

B[p, 0]← 0;
for i← SL1 to SH1 do

B[1, i]←W1,i/e1;
for p← 2 to P do

j ← SLp−1;
for i← SLp to SHp do

if Wj+1,i/ep ≤ B[p− 1, j] then
B[p, i]← B[p− 1, j];

else
repeat

j ← j + 1;
until Wj+1,i/ep ≤ B[p− 1, j] or j ≥ i;
if Wj,i/ep < B[p− 1, j] then

B[p, i]←Wj,i/ep;
j ← j − 1;

else
B[p, i]← B[p− 1, j];

return Bopt ← B[P,N ];

(a) (b)

Fig. 2. DP algorithms for heterogeneous systems: (a) basic DP algorithm, and (b)
DP algorithm (DP+) with static separator index bounding.

In the homogenous case, Manne and Olstad [12] reduced the complexity fur-

ther to O((N−P )P ) by observing that there is no merit in leaving a processor

empty, and thus the search for jp
i can start at p instead of 1. However, this

does not apply to the heterogeneous CCP, since it might be beneficial to leave

a processor empty.

Alternatively, we propose another DP algorithm by extending the DP+ al-

gorithm (DP algorithm with static separator-index bounding) of Pınar and

Aykanat [17] for the heterogeneous case. DP+ limits the search space of each

separator to avoid redundant calculation of Bp
i values. DP+ achieves this sepa-

rator index bounding by running left-to-right and right-to-left probe functions

with the upper and lower bounds on the optimal bottleneck value.

15



LR-PROBE (W, N, E , P,B)
sum← 0;
for p← 1 to P − 1 do

myB ← B × ep;
Bsum← sum + myB;
m← BINSEARCH(W, Bsum);
sum←W1,m;
sp ← m;

if sum + B × eP ≥W1,N then
return TRUE;

else
return FALSE;

(a)

RL-PROBE (W, N, E , P,B)
sum←W1,N ;
for p← P downto 2 do

myB ← B × ep;
Bsum← sum−myB;
m← BINSEARCH(W, Bsum);
sum←W1,m;
sp−1 ← m;

if sum−B × e1 ≤ 0 then
return TRUE;

else
return FALSE;

(b)

Fig. 3. Greedy PROBE algorithms for heterogeneous systems: (a) left-to-right, and
(b) right-to-left.

We extend the probing operation to the heterogeneous case as shown in

Fig. 3. In the figure, LR-PROBE and RL-PROBE denote the left-to-right

probe and right-to-left probe, respectively. These algorithms not only de-

cide whether a candidate value is a feasible bottleneck value, but they also

set the separator index (sp) values for their greedy approach. In LR-PROBE,

BINSEARCH(W, w) refers to a binary search algorithm that searches W for

the largest index m such that W1,m ≤ w. Similarly, in RL-PROBE, BIN-

SEARCH(W, w) searches W for the smallest index m such that W1,m ≥ w.

DP+, as presented in Fig. 2(b), uses Lemma 4.3 to limit the search space of

sp values.

Lemma 4.3 For a given heterogeneous CCP instance (W, N, E , P ), a feasible

bottleneck value UB and a lower bound on the bottleneck value LB; let the

sequences Π1 = 〈h1
0, h

1
1, . . . , h

1
P 〉, Π2 = 〈l20, l21, . . . , l2P 〉, Π3 = 〈l30, l31, . . . , l3P 〉 and

Π4 = 〈h4
0, h

4
1, . . . , h

4
P 〉 be the partitions constructed by LR-PROBE(UB ), RL-

PROBE(UB ), LR-PROBE(LB ) and RL-PROBE(LB), respectively. Then, an

optimal partition Πopt = 〈s0, s1, . . . , sP 〉 satisfies SLp ≤ sp ≤ SHp for all

16



1 ≤ p ≤ P , where SLp = max{l2p, l3p} and SHp = min{h1
p, h

4
p}.

Proof: We know that any feasible bottleneck value is greater than or equal

to the optimal bottleneck value, i.e., UB ≥ Bopt. Consider h1
p, which is the

largest index such that the first h1
p tasks can be partitioned over p processors

without exceeding UB . Then sp > h1
p implies Bopt > UB , which is a con-

tradiction. So, sp ≤ h1
p. Since, RL-PROBE is just the symmetric algorithm of

LR-PROBE, the same argument proves sp ≥ l2p.

Consider the optimal partition constructed by RL-PROBE(Bopt). Since Bopt ≥

LB , by the greedy property of RL-PROBE, sp ≤ h4
p. Assume sp < l3p for some

p, then another partition obtained by advancing the sp value to l3p does not

increase the bottleneck value, since the first l3p tasks are successfully partitioned

over the first p processors without exceeding LB and thus Bopt. An optimal

partition Πopt = 〈s0, s1, . . . , sP 〉 satisfies l3p ≤ sp ≤ h4
p. �

The lower bound LB can be initialized to the optimal lower bound when all

processors are equally loaded as

LB = B∗ =
Wtot

Etot

. (5)

An upper bound UB can be computed in practice with a fast and effective

heuristic, and Lemma 4.1 provides a theoretically robust bound as

UB = B∗ +
wmax

emin

− wmax

Pemin

. (6)

4.3 Parametric Search

Parametric search algorithms can be constructed with a PROBE function (ei-

ther LR-PROBE or RL-PROBE given in Fig. 3), and a method to search the

space of candidate values. Below, we describe several algorithms to search the

17



space of bottleneck values for the heterogeneous case.

4.3.1 Nicol’s Algorithm

We revise Nicol’s algorithms for heterogeneous systems as follows. The can-

didate B values become task subchain weights divided by processor sub-

chain speeds. The algorithm starts with searching for the smallest j so that

probing with W1,j/e1 succeeds, and probing with W1,j−1/e1 fails. This means

W1,j−1/e1 < Bopt ≤ W1,j/e1, and thus in an optimal solution the probe func-

tion will assign the first j tasks to the first processor if it is the bottleneck

processor, and the first j− 1 tasks to the first processor if not. Then the opti-

mal solution value is the minimum of W1,j/e1 and the optimal solution value

for partitioning the remaining task subchain Tj,N to the processor subchain

P2,P , since any solution with a bottleneck value less than W1,j/e1 will assign

only the first j−1 tasks to the first processor. Finding the j value requires lg N

probes, and we repeat this search operation for all processors in order. This

version of Nicol’s algorithm runs in O(N+(P lg N)2) time. Fig. 4(a) displays

this algorithm.

4.3.2 Nicol’s Algorithm with Dynamic Bottleneck-Value Bounding

By keeping the largest B that succeeded and the smallest B that failed, we

can improve Nicol’s algorithm by eliminating unnecessary probing. Let LB

and UB represent the lower bound and upper bound for Bopt, respectively.

If a processor cannot update LB or UB , that processor does not make any

PROBE calls. This algorithm, presented in Fig. 4(b), is referred to as NICOL+.

In the worst case, a processor makes O(lg N) PROBE calls. But, as we will

prove below, the number of probes performed by NICOL+ cannot exceed

P lg (1+wmax/(Peminwmin)). This analysis also improves known complexities

18



NICOL (W, E , N, P )
i0 ← 1;
for b← 1 to P − 1 do

ilow ← ib−1; ihigh← N ;
while ilow < ihigh do

imid← (ilow + ihigh)/2;
B ←Wib−1,imid/eb;
if PROBE(B) then

ihigh← imid;
else

ilow ← imid + 1;
ib ← ihigh;
Bb ← Wib−1,ib/eb;

BP ←WiP−1,N/eP ;
return Bopt ← min1≤b≤P {Bp};

NICOL+ (W, E , N, P )
i0 ← 1;
LB ← B∗ ←W1,N/E1,P ;
UB ← LB + wmax × (1/emin − 1/Etot);
for b← 1 to P − 1 do

ilow ← ib−1; ihigh← N ;
while ilow < ihigh do

imid← (ilow + ihigh)/2;
B ←Wib−1,imid/eb;
if LB ≤ B < UB then

if PROBE(B) then
ihigh← imid;
UB ← B;

else
ilow ← imid + 1;
LB ← B;

else if B ≥ UB then
ihigh ← imid;

else
ilow ← imid + 1;

ib ← ihigh;
Bb ←Wib−1,ib/eb;

BP ← WiP−1,N/eP ;
return Bopt ← min1≤b≤P {Bp};

(a) (b)

Fig. 4. Nicol’s algorithms for heterogeneous systems: (a) Nicol’s basic algorithm, (b)
Nicol’s algorithm (NICOL+) with dynamic bottleneck-value bounding.

of homogeneous version of the algorithm. Lemma 4.4 describes an upper bound

on the number of probes performed by NICOL+ algorithm.

Lemma 4.4 The number of probes required by NICOL+ is upper bounded by

P lg (1+(UB − LB) / (Pwmin)).

Proof: Consider the first step of the algorithm, where we search for the

smallest separator index that makes the first processor the bottleneck proces-

sor. We can restrict this search in a range that covers only those indices for

which the weight of the first chain will be in the [LB ,UB ] interval. If there

are n1 tasks in this range, NICOL+ will require lg n1 probes. This means that

the [LB ,UB ] interval is narrowed by at least (n1 − 1)wmin after the first step.

19



Let kp be the number of probes by the pth processor. Since kp probes narrow

the [LB ,UB ] interval by
(
2kp − 1

)
wmin, we have

((
2k1 − 1

)
+
(
2k2 − 1

)
+ . . . +

(
2kP−1 − 1

))
wmin ≤ UB − LB ,

and thus 2k1 +2k2 + . . .+2kP−1 ≤ UB − LB

wmin

+P − 1. The corresponding total

number of probes is
∑P−1

p=1 kp, which reaches its maximum when
∑P−1

p=1 2kp is

maximum and k1 = k2 = . . . = kP−1 = k for some k. In that case,

(P − 1)2k ≤ UB − LB

wmin

+ P − 1

and thus

k ≤ lg

(
1 +

UB − LB

wmin(P − 1)

)
.

So, the total number of probes performed by NICOL+ is upper bounded by:

P−1∑
p=1

kp ≤ (P − 1)k ≤ (P − 1) lg

(
1 +

UB − LB

wmin(P − 1)

)
< P lg

(
1 +

UB − LB

wminP

)

�

Corollary 4.5 NICOL+ requires at most P lg(1+wmax/(Peminwmin)) probes

for heterogeneous, and P lg(1 + wmax/(Pwmin)) probes for homogeneous sys-

tems.

NICOL+ runs in O(N+P 2 lg N lg(1+wmax/(Peminwmin))) time, with the O(P lg N)

cost of a PROBE call. In most configurations, wmax/(eminwminP ) is very small,

and is O(1) if Pemin = Ω(wmax/wmin). In that case, the runtime complexity of

NICOL+ reduces to O(N+P 2 lg N).

4.3.3 Bidding Algorithm

For heterogeneous systems, the bidding algorithm uses the lower bound given

in Eq. 5 for optimal bottleneck value, and gradually increases this lower

20



BIDDING (W, N, E , P )
minBid ←W1,N/E1,P ;
LR-PROBE(W, N, E , P,minBid);
for p← 1 to P − 1 do

bids[p]←Wsp−1+1,sp+1/ep;
Q←BUILD-HEAP(P );
repeat

minP ←EXTRACT-MIN(Q);
wlast ←WsP−1+1,N/eP ;
minBid ← bids[minP ];
if minBid < wlast then

for p← minP to P − 1 do
sp ← BINSEARCH(W,minBid × ep + W1,sp−1);
previousBid← bids[p];
bids[p]← Wsp−1+1,sp/ep;
if bids[p] > previousBid then

INCREASE-KEY (Q, p);
else if bids[p] < previousBid then

DECREASE-KEY (Q, p);
until minBid ≥ wlast ;

Fig. 5. Bidding algorithm for heterogeneous systems.

bound. The bid of each processor Pp, for p = 1, 2, . . . , P −1, is calculated

as Wsp−1+1,sp+1 / ep, which is equal to the load of Pp if it also executes the

first task of Pp+1 in addition to its current load. Then, the algorithm selects

the processor with the minimum bid value so that this bid value becomes the

next bottleneck value to be considered for feasibility. The processors following

the bottleneck processor in the processor chain are processed in order, except

the last processor. The separator indices of these processors are adjusted ac-

cordingly so that the processors are maximally loaded not to exceed that new

bottleneck value. The load of the last processor determines the feasibility of the

current bottleneck value. If current bottleneck value is not feasible, the process

repeats. Fig. 5 presents the bidding algorithm, which uses a min-priority queue

that maintains the processors keyed according to their bid values. In the fig-

ure, BUILD-HEAP, EXTRACT-MIN , INCREASE-KEY and DECREASE-KEY

functions refer to the respective priority queue operations [4].

21



In the worst case, the bidding algorithm moves P separators for O(N) posi-

tions. Choosing a new bottleneck value takes O(lg P ) time using a binary heap

implementation of the priority queue. Totally the complexity of the algorithm

is O(NP lg P ) in the worst case. Despite this high worst-case complexity, the

bidding algorithm is quite fast in practice.

4.3.4 Bisection Algorithm

For heterogeneous systems, the bisection algorithm can use the LB and UB

values given in Eqs. 5 and 6. A binary search on this [LB ,UB ] interval requires

O(lg(wmax/(εEtot))) probes, thus leading to an O(lg(wmax/(εEtot))P lg N)-

time algorithm, where ε is the specified accuracy of the algorithm. Fig. 6(a)

presents this ε-approximation bisection algorithm. We should note that, al-

though the homogenous version of this algorithm becomes an exact algorithm

for integer-valued workload arrays by setting ε = 1, this is not the case for

heterogeneous systems.

We enhance this bisection algorithm to be an exact algorithm for heteroge-

neous systems by extending the scheme proposed by Pınar and Aykanat [17]

for homogenous systems. After each probe, we move lower and upper bounds

to realizable bottleneck values, as opposed to the probed value. In heteroge-

neous systems, realizable bottleneck values are subchain weights divided by

appropriate processor speeds. After a successful probe, we decrease UB to the

bottleneck value of the partition constructed by the probe, and after a failed

probe we increase LB to the bid value as described for the bidding algorithm

in Section 4.3.3. Each probe eliminates at least one candidate bottleneck value,

and thus the bisection algorithm terminates in a finite number of steps with

an optimal solution. Fig. 6(b) displays the exact bisection algorithm.

22



BISECTION (W, N, E , P, ε)
LB ← W1,N/E1,P ;
UB ← LB + wmax/emin;
while UB − LB ≥ ε do

midB ← (UB + LB)/2;
if PROBE(midB ) then

UB ← midB ;
else

LB ← midB ;
return UB ;

(a)

EXACT-BISECTION (W, N, E , P )
LB ←W1,N/E1,P ;
UB ← LB + wmax/emin;
while UB > LB do

midB ← (UB + LB)/2;
if LR-PROBE(midB ) then

UB ← min1≤p≤P Wsp−1+1,sp/ep;
else

LB ← min1≤p≤P−1 Wsp−1+1,sp+1/ep;
return UB ;

(b)

Fig. 6. Bisection algorithms for heterogeneous systems: (a) ε-approximation bisec-
tion algorithm, (b) Exact bisection algorithm.

5 Chain Partitioning (CP) Problem for Heterogeneous Systems

In this section, we study the problem of partitioning a chain of tasks onto

a set of processors, as opposed to a chain of processors. The solution to

this problem is not only separators on the task chain, but also processor-to-

subchain assignments. Thus, we define a mappingM as a partition Π = 〈s0 =

0, s1, . . . , sP =N〉 of the given task chain T = 〈t1, t2, . . . tN〉 with sp ≤ sp+1 for

0 ≤ p < P , and a permutation 〈π1, π2, . . . , πP 〉 of the given set of P proces-

sors P = {P1,P2, . . . ,PP}. According to this mapping, the pth task subchain

〈tsp−1+1, . . . , tsp〉 is executed on processor Pπp . The cost C(M) of a mapping

M is the maximum subchain computation time, determined by the subchain

weight and the execution speed of the assigned processor, i.e.,

C(M) = max
1≤p≤P

{
Wsp−1+1,sp

eπp

}
.

We will prove that the CP problem is NP-complete. The decision problem for

the CP problem for heterogeneous systems is as follows.

23



Given a chain of tasks T = 〈t1, t2, . . . , tN 〉, a weight wi ∈ Z+ for each ti ∈ T ,

a set of processors P = {P1,P2, . . . ,PP} with P < N , an execution speed

ep ∈ Z+ for each Pp ∈ P, and a bound B, decide if there exists a mappingM

of T onto P such that C(M) ≤ B.

Theorem 5.1 The CP problem for heterogeneous systems is NP-complete.

Proof: We use reduction from the 3-Partition (3P) problem. A pseudo-

polynomial transformation suffices, because 3P problem is NP-complete in

the strong sense (i.e., there is no pseudo-polynomial time algorithm for the

problem unless P=NP). The 3P problem is stated in [8] as follows.

Given a finite set A of 3m elements, a bound B ∈ Z+, and a cost ci ∈ Z+

for each ai ∈ A, where
∑

ai∈A ci = mB and each ci satisfies B/4 < ci < B/2,

decide if A can be partitioned into m disjoint sets S1, S2, . . . , Sm such that

∑
ai∈Sp

ci = B for p = 1, 2, . . . , m.

For a given instance of the 3P problem, the corresponding CP problem is

constructed as follows.

• The number of tasks N is m(B +1)− 1. The weight of every (B +1)st task

is B, (i.e., wi = B for i mod (B + 1) = 0), and the weights of all other

tasks are 1.

• The number of processors P is 4m − 1. The first m − 1 processors have

execution speeds of B, (i.e., ep = B for p = 1, 2, . . . , m − 1), and the

remaining processors have execution speeds equal to the costs of items in

the 3P problem (i.e., ep = cp−m+1 for p = m, . . . , 4m− 1).

We claim that there is a solution to the 3P problem if and only if there

is a mapping M with cost C(M) = 1 for the CP problem. The following

24



observations constitute the basis for our proof.

• The processors with execution speeds of B must be mapped to tasks with

weight B to have a solution with cost C(M) = 1, because the execution

speeds of all other processors are ≤ B/2. These processors (tasks) serve as

divider processors (tasks).

• The total weight of the chain is 3m + (m− 1)B = (B + 3)m−B. The sum

of execution speeds of all processors is also (m−1)B +3m = (B +3)m−B.

This forces each processor to be assigned a load with value equal to its

execution speed to achieve a mapping with cost C(M) = 1.

As noted above, the divider processors should be assigned to the divider tasks.

Between two successive divider tasks there is a subchain of B unit-weight tasks

with total weight B, which must be assigned to a subset of processors with

total execution speed B. Since there are m such subchains, the same grouping

of the processors is also valid for grouping ci values in the 3P problem. Thus

the 3P problem can be reduced to the CP problem, proving the CP problem

is NP-hard.

The cost of a given mapping can be computed in polynomial time, thus the

problem is in NP. Thus we can conclude that the chain partitioning problem

for heterogeneous systems is NP-Complete. �

This complexity shows that we need to resort to heuristics for practical solu-

tions to the CP problem. With the nearly perfect balance results and extremely

fast runtimes as we will present in Section 6.2, CCP algorithms can serve as

good heuristics for the CP problem. We tried this approach by finding optimal

CCP solutions for randomly ordered processor chains of a CP instance. We

observed that the sensitivity to processor ordering is quite low. You can find

25



a description of these studies in Section 6.3. We also tried improvement tech-

niques, where we swapped processors in the chain to decrease the bottleneck

value, but the improvements were modest and could hardly compensate for

the increase in runtimes.

6 Experimental Results

6.1 Experimental Setup

The 1D task arrays used in both CCP and CP experiments were derived from

two different applications: image-space-parallel direct volume rendering and

row-parallel sparse matrix vector multiplication.

Direct volume rendering experiments are performed on three curvilinear datasets

from NASA Ames Research Center [1], namely Blunt Fin (blunt), Combustion

Chamber (comb), and Oxygen Post (post). These datasets are processed using

the tetrahedralization techniques described in [9] and [18] to produce three-

dimensional (3D) unstructured volumetric datasets. The two-dimensional (2D)

workload arrays are constructed by projecting 3D volumetric datasets onto

2D screens of resolution 256× 256 using the workload criteria of image-space-

parallel direct volume rendering algorithm described in [2]. Here, the rendering

operations associated with the individual pixels of the screen constitute the

computational tasks of the application. The resulting 2D task array is then

mapped to a 1D task array using Hilbert space-filling-curve traversal [15]. The

workload distributions of the 2D task arrays are visualized in Fig. 7, where

darker areas represent more weighted tasks. The histograms at the bottom of

the 2D pictures show the weight distributions of the resulting 1D task arrays.

In the sparse matrix experiments, we consider rowwise block partitioning of

the matrices obtained from University of Florida Sparse Matrix Collection [5].

26



a) Blunt Fin b) Combustion Chamber c) Oxygen Post

Fig. 7. Visualization of direct volume rendering dataset workloads. Top: workload

distributions of 2D task arrays. Bottom: histograms showing weight distributions of

1D task chains.

In row-parallel matrix vector multiplies, the rows correspond to the tasks to

be partitioned, and the number of nonzeros in each row is the weight of the

corresponding task. The nonzero distributions of the sparse matrices are shown

in Fig. 8. The histograms on the right sides of the visualizations represent the

number of nonzeros in each row.

Table 2 displays the properties of the 1D task chains used in our experiments.

In the volume rendering dataset, the number of tasks is considerably less than

the screen resolution, because zero-weight tasks are omitted. In the sparse

matrix dataset, the number of tasks is equal to the number of rows.

In both CCP and CP experiments, P = 32, 64, 128, 256, 512, 1024, and 2048-

way partitioning of the 1D task arrays were performed. We experimented

with different variances of processor speeds, where the processors speeds were

chosen uniformly distributed in the 1–4, 1–8, and 1–16 ranges.

In the experiments, the P -way partitioning of a given task chain for a given

27



a) g7jac050sc b) language

c) mark3jac060 d) Stanford

e) Stanford Berkeley f) torso1

Fig. 8. Visualization of sparse matrix dataset workloads. Left: non-zero distributions

of the sparse matrices. Right: histograms showing weight distributions of the 1D task

chains.

processor speed range constitutes a partitioning instance. As randomization

is used in determining processor speeds, each task chain was partitioned onto

20 different uniformly random processor chains/sets for each speed range, and

average performance results are reported for each partitioning instance.

The solution qualities are represented by percent load imbalance values. The

percent load imbalance of a partition is computed as 100×(B−B∗)/B∗, where

B denotes the bottleneck value of the respective partition.

28



Table 2
Properties of the test set
Name No. of tasks N Workload

Total Per task

Wtot wavg wmin wmax

Volume rendering dataset

blunt 20.6 K 1.9 M 90.95 36 171

comb 32.2 K 2.1 M 64.58 14 149

post 49.0 K 5.4 M 109.73 33 199

Sparse matrix dataset

g7jac050sc 14.7 K 0.2 M 10.70 2 149

language 399.1 K 1.2 M 3.05 1 11555

mark3jac060 27.4 K 0.2 M 6.22 2 44

Stanford 261.6 K 2.3 M 8.84 1 38606

Stanford Berkeley 615.4 K 7.6 M 12.32 1 83448

torso1 116.2 K 8.5 M 73.32 9 3263

6.2 CCP Experiments

The proposed CCP algorithms were implemented in the Java language. Ta-

bles 3–6 compare the solution qualities of heuristics with respect to those of

the optimal partitions obtained by the exact algorithms. In these tables, OPT

values refer to the optimal load imbalance values.

Tables 3 and 4 respectively display the percent load imbalance values obtained

in mapping the volume rendering and sparse matrix task chains onto proces-

sor chains with 1–8 execution speed range. As seen in these two tables, RB

performs much better than MP. Out of 63 partitioning instances, RB found

better solutions than MP in all but one instance.

As seen in Tables 3 and 4, in general, the quality gap between exact algorithms

and heuristics increases with increasing number of processors. For instance,

in 2048-way partitioning of the torso1 matrix, best heuristic finds a solution

with 252.44% load imbalance, which means a processor is loaded more than

3.5 times the average load, causing a slowdown as the number of processors

increase. An optimal solution however, will have a load imbalance value of

29



Table 3
Percent load imbalance values for the processor speed range of 1–8 for the volume
rendering dataset

CCP instance Heuristics OPT

Name P RB MP

blunt 32 0.27 0.31 0.08
64 0.62 0.78 0.16

128 1.35 2.07 0.32
256 2.94 4.67 0.64
512 7.27 10.96 1.27

1024 15.15 21.94 2.83
2048 36.90 49.23 4.99

comb 32 0.17 0.24 0.06
64 0.44 0.63 0.11

128 1.11 1.60 0.23
256 2.38 3.63 0.45
512 5.42 7.97 0.92

1024 12.94 18.24 1.83
2048 26.61 41.66 3.64

post 32 0.11 0.13 0.03
64 0.25 0.39 0.07

128 0.61 0.86 0.13
256 1.34 2.05 0.27
512 3.10 4.32 0.54

1024 6.59 9.21 1.09
2048 16.21 19.82 2.15

27.61%, providing scalability to thousands of processors.

Tables 5 and 6 display the variation of load balancing performances of heuris-

tics and exact algorithms with varying processor speed ranges for the volume

rendering and sparse matrix task chains, respectively. Since RB outperforms

MP, only the results for the RB heuristic are displayed in these two tables. The

bottom parts of these two tables show the geometric averages of the percent

load imbalance values over the number of processors.

As seen in Tables 5 and 6, in general, the performance gap between heuristics

and exact algorithms decrease with decreasing processor speed range. However,

there exists considerable quality difference between the heuristics and exact

algorithms even for the smallest 1–4 speed range.

In constructing the processor chains for the experiments, in addition to the

random processor ordering, we also investigated different orderings of the pro-

30



Table 4
Percent load imbalance values for the processor speed range of 1–8 for the sparse

matrix dataset
CCP instance Heuristics OPT

Name P RB MP

g7jac050sc 32 2.21 3.08 0.40
64 4.88 6.06 0.75

128 12.21 17.16 1.52
256 29.06 42.86 3.10
512 84.54 90.48 6.60

1024 171.47 289.02 13.59
2048 261.51 624.91 30.96

language 32 4.58 4.93 0.21
64 22.60 23.06 0.40

128 42.06 71.35 1.25
256 98.08 184.87 35.81
512 230.49 379.11 171.98

1024 527.56 1, 173.23 443.95
2048 1, 191.77 2, 294.59 992.35

mark3jac060 32 0.32 0.54 0.08
64 0.87 1.01 0.17

128 2.09 2.75 0.36
256 5.98 6.90 0.69
512 15.47 18.17 1.36

1024 30.23 51.57 2.89
2048 64.50 127.93 5.92

Stanford 32 12.91 22.85 2.46
64 42.77 84.14 5.38

128 110.83 274.42 21.32
256 204.46 617.98 138.66
512 435.52 1, 058.28 377.97

1024 1, 009.58 2, 585.17 855.91
2048 1, 978.18 5, 313.99 1, 819.63

Stanford Berkeley 32 10.76 16.91 1.40
64 49.53 57.69 3.29

128 89.68 177.24 8.19
256 160.39 375.68 57.31
512 315.61 761.14 215.05

1024 624.98 1, 911.41 530.08
2048 1, 248.18 3, 949.65 1, 165.31

torso1 32 1.74 2.15 0.45
64 3.82 4.91 0.91

128 8.75 10.30 1.84
256 22.46 31.18 3.69
512 31.68 75.51 7.48

1024 75.55 75.89 17.86
2048 252.44 252.44 27.61

cessors having the same speed. In this context, we experimented with the cases

where processors having the same speed ordered consecutively, assuming that

such processors belong to the same homogenous cluster and hence they are

naturally adjacent to each other in the processor chain. We did not observe

a considerable sensitivity of the relative load balancing performance between

heuristics and exact algorithms to the ordering of processors having the same

31



Table 5
Percent load imbalance values for different processor speed ranges for the volume

rendering dataset

CCP instance 1–4 1–8 1–16

Name P RB OPT RB OPT RB OPT

blunt 32 0.21 0.08 0.27 0.08 0.38 0.08
64 0.39 0.16 0.62 0.16 0.93 0.16

128 1.06 0.31 1.35 0.32 2.21 0.31
256 2.19 0.64 2.94 0.64 5.54 0.64
512 4.62 1.27 7.27 1.27 11.57 1.25

1024 10.83 2.70 15.15 2.83 26.88 2.61
2048 22.43 4.93 36.90 4.99 52.25 5.42

comb 32 0.12 0.06 0.17 0.06 0.22 0.06
64 0.35 0.11 0.44 0.11 0.72 0.11

128 0.77 0.23 1.11 0.23 1.65 0.23
256 1.58 0.45 2.38 0.45 3.78 0.45
512 3.53 0.91 5.42 0.92 9.61 0.91

1024 7.71 1.82 12.94 1.83 19.75 1.83
2048 17.53 3.67 26.61 3.64 44.69 3.64

post 32 0.07 0.03 0.11 0.03 0.17 0.03
64 0.18 0.07 0.25 0.07 0.40 0.07

128 0.40 0.14 0.61 0.13 0.91 0.13
256 0.87 0.27 1.34 0.27 2.25 0.27
512 1.88 0.54 3.10 0.54 4.66 0.54

1024 4.41 1.09 6.59 1.09 11.42 1.08
2048 8.87 2.26 16.21 2.15 26.87 2.16

Geometric averages over P
32 0.12 0.05 0.17 0.05 0.24 0.05
64 0.29 0.11 0.41 0.11 0.65 0.11

128 0.69 0.21 0.97 0.21 1.49 0.21
256 1.44 0.43 2.11 0.43 3.61 0.43
512 3.13 0.86 4.96 0.86 8.03 0.85

1024 7.17 1.75 10.89 1.78 18.23 1.73
2048 15.16 3.45 25.15 3.39 39.73 3.49

speed.

Tables 7–9 display the execution times of the proposed CCP algorithms on a

workstation equipped with a 3 GHz Pentium-IV and 1 GB of memory. In these

tables, NC+, BID, and EBS respectively represent the NICOL+, BIDDING,

and EXACT-BISECTION algorithms presented in Figs. 4, 5, and 6.

Tables 7 and 8 respectively display the execution times of the CCP algo-

rithms for mapping the volume rendering and sparse matrix task chains onto

processor chains with 1–8 execution speed range. In these two tables, rela-

tive performance comparison of heuristics shows that MP is slightly faster

than RB. Since RB outperforms MP in terms of solution quality as shown in

Tables 3 and 4, these results reveal the superiority of RB to MP.

32



Table 6
Percent load imbalance values for different processor speed ranges for the sparse

matrix dataset
CCP instance 1–4 1–8 1–16

Name P RB OPT RB OPT RB OPT

g7jac050sc 32 1.22 0.37 2.21 0.40 2.53 0.40
64 3.53 0.79 4.88 0.75 6.96 0.76

128 8.94 1.57 12.21 1.52 16.15 1.52
256 19.62 3.18 29.06 3.10 65.36 3.16
512 42.24 6.62 84.54 6.60 104.54 6.68

1024 124.82 14.92 171.47 13.59 162.21 13.56
2048 307.43 32.67 261.51 30.96 261.88 30.02

language 32 0.36 0.05 4.58 0.21 1.39 0.10
64 14.09 0.41 22.60 0.40 6.57 0.22

128 51.77 1.01 42.06 1.25 22.46 1.39
256 102.08 52.24 98.08 35.81 99.07 27.82
512 257.83 203.88 230.49 171.98 232.00 156.36

1024 554.09 506.99 527.56 443.95 519.77 415.09
2048 1, 210.34 1, 115.84 1, 191.77 992.35 1, 088.49 933.33

mark3jac060 32 0.27 0.08 0.32 0.08 0.40 0.08
64 0.68 0.17 0.87 0.17 1.17 0.16

128 1.67 0.34 2.09 0.36 3.15 0.35
256 4.15 0.69 5.98 0.69 10.32 0.69
512 8.82 1.38 15.47 1.36 22.87 1.40

1024 20.17 2.85 30.23 2.89 49.73 2.82
2048 41.26 5.82 64.50 5.92 111.65 5.68

Stanford 32 16.93 2.53 12.91 2.46 20.07 2.61
64 42.61 5.93 42.77 5.38 48.28 4.88

128 122.92 32.98 110.83 21.32 90.44 17.79
256 219.75 167.53 204.46 138.66 215.16 124.62
512 466.32 434.02 435.52 377.97 427.96 350.50

1024 1, 019.25 966.68 1, 009.58 855.91 956.15 805.19
2048 2, 131.61 2, 036.65 1, 978.18 1, 819.63 1, 935.93 1, 715.91

Stanford Berkeley 32 7.14 1.29 10.76 1.40 15.32 1.44
64 26.91 2.51 49.53 3.29 43.39 3.29

128 85.08 8.96 89.68 8.19 74.51 8.02
256 191.93 76.34 160.39 57.31 146.90 48.06
512 331.15 251.99 315.61 215.05 316.54 196.95

1024 622.85 603.10 624.98 530.08 584.74 496.65
2048 1, 339.44 1, 308.36 1, 248.18 1, 165.31 1, 261.41 1, 096.94

torso1 32 1.01 0.46 1.74 0.45 1.91 0.45
64 2.50 0.89 3.82 0.91 4.64 0.88

128 5.82 1.72 8.75 1.84 14.14 1.85
256 10.03 3.49 22.46 3.69 22.75 3.73
512 16.01 5.37 31.68 7.48 65.98 8.26

1024 40.87 13.12 75.55 17.86 186.70 15.92
2048 96.14 38.26 252.44 27.61 231.35 32.85

Geometric averages over P
32 1.57 0.36 3.04 0.47 3.06 0.42
64 6.78 0.94 9.59 0.97 8.97 0.86

128 18.99 2.55 21.30 2.45 21.85 2.41
256 38.99 13.12 48.21 11.44 60.30 10.51
512 78.70 32.11 104.64 31.31 130.58 30.67

1024 181.87 74.04 225.17 72.17 275.55 68.26
2048 401.91 166.92 481.94 148.31 511.84 146.37

In Tables 7 and 8, relative performances of exact CCP algorithms show that

both NICOL+ and EBS are an order of magnitude faster than DP+ and BID

for both volume rendering and sparse matrix datasets. As also seen in these

33



Table 7
Partitioning times (in msecs) for the processor speed range of 1–8 for the volume

rendering dataset

CCP instance Heuristics Exact algorithms

Name P RB MP DP+ NC+ BID EBS

blunt 32 0.37 0.36 1 0.58 0.52 0.49
64 0.39 0.38 1 0.85 0.84 0.66

128 0.44 0.42 2 1.39 1.91 1.05
256 0.51 0.47 4 2.42 4.91 1.74
512 0.64 0.57 14 4.68 13.97 3.28

1024 0.89 0.76 54 8.67 43.05 6.45
2048 1.37 1.12 201 15.27 97.54 12.09

comb 32 0.62 0.61 1 0.85 0.80 0.75
64 0.65 0.64 1 1.15 1.17 0.96

128 0.69 0.67 2 1.68 2.40 1.37
256 0.77 0.74 5 2.87 6.04 2.13
512 0.91 0.84 16 4.84 16.92 3.74

1024 1.17 1.04 59 9.44 47.19 7.08
2048 1.68 1.42 230 17.86 130.51 13.30

post 32 1.12 1.11 2 1.36 1.30 1.26
64 1.15 1.14 2 1.68 1.69 1.46

128 1.20 1.18 3 2.26 2.91 1.88
256 1.29 1.26 6 3.52 6.54 2.82
512 1.45 1.38 16 5.91 16.95 4.51

1024 1.73 1.59 55 10.36 44.10 7.52
2048 2.25 1.99 205 20.02 114.60 14.81

two tables, EBS is slightly faster than NICOL+.

It is worth highlighting that for small to medium concurrency, the time it

takes EBS and NICOL+ algorithms to find optimal solutions is less than three

times the time of the fastest heuristic. More precisely, on overall average, EBS

takes only 147% more time than the fastest heuristic for 256-way partitioning.

On the other hand, at higher number of processors, the solution qualities of

heuristics degrade significantly: on overall average, optimal solutions provide

5.35, 5.47 and 6.00 times better load imbalance values than the best heuristic

for 512, 1024 and 2048-way partitionings, respectively. According the these

experimental results, we recommend the use of exact CCP algorithms instead

of heuristics for heterogeneous systems.

Table 9 displays the variation of running time performances of the CCP al-

34



Table 8
Partitioning times (in msecs) for the processor speed range of 1–8 for the sparse

matrix dataset
CCP instance Heuristics Exact algorithms

Name P RB MP DP+ NC+ BID EBS

g7jac050sc 32 0.31 0.30 1 0.54 0.56 0.46
64 0.33 0.32 1 0.83 1.08 0.65

128 0.37 0.35 4 1.31 2.61 1.04
256 0.44 0.40 13 2.47 7.23 1.80
512 0.56 0.49 54 4.51 18.88 3.27

1024 0.80 0.67 234 8.65 48.90 6.07
2048 1.27 1.02 1730 15.06 100.99 11.96

language 32 7.80 7.80 17 8.19 9.19 8.05
64 7.84 7.83 22 8.71 14.02 8.47

128 7.91 7.89 56 9.88 32.63 9.33
256 8.05 8.01 1999 11.27 8.25 10.63
512 8.28 8.21 6298 12.38 8.55 11.73

1024 8.70 8.57 15839 15.96 9.14 16.13
2048 9.47 9.20 33199 21.82 10.29 20.59

mark3jac060 32 0.47 0.46 1 0.69 0.62 0.60
64 0.49 0.48 1 0.96 0.94 0.76

128 0.54 0.52 2 1.48 1.73 1.09
256 0.62 0.58 7 2.43 3.55 1.78
512 0.76 0.69 23 4.35 7.95 3.04

1024 1.01 0.88 90 7.81 19.96 5.95
2048 1.50 1.25 371 15.91 45.62 11.39

Stanford 32 4.98 4.97 26 5.51 25.10 5.38
64 5.01 5.00 79 5.99 82.71 5.85

128 5.08 5.06 841 7.09 437.39 6.67
256 5.20 5.16 3989 8.42 3022.05 7.80
512 5.41 5.34 9667 10.77 7524.42 10.08

1024 5.79 5.65 22472 15.55 16580.61 14.83
2048 6.48 6.20 49112 25.02 34629.44 23.78

Stanford Berkeley 32 19.15 19.15 53 19.72 47.08 19.63
64 19.20 19.18 154 20.60 140.26 20.17

128 19.27 19.25 558 22.27 460.82 21.16
256 19.39 19.35 4273 24.34 3722.02 22.24
512 19.61 19.55 22065 27.82 10742.26 24.53

1024 20.02 19.89 47607 34.03 22496.33 28.87
2048 20.78 20.50 100548 46.18 46014.22 37.61

torso1 32 2.12 2.11 5 2.46 4.29 2.38
64 2.14 2.13 9 2.83 8.80 2.66

128 2.18 2.16 22 3.55 25.10 3.22
256 2.26 2.22 83 5.03 76.26 4.45
512 2.40 2.33 360 7.61 201.48 6.69

1024 2.68 2.56 1566 13.00 522.08 10.65
2048 3.24 2.98 6933 23.04 783.22 18.39

gorithms with varying processor speed ranges for the volume rendering and

sparse matrix task chains. For a better performance comparison, execution

times of the algorithms were normalized with respect to those of the RB

heuristic and averages of these normalized values over P are presented in the

table. We should mention here that the running time of the RB heuristic does

35



Table 9
Partitioning time averages (over P ) of the exact CCP algorithms normalized with
respect to those of the RB heuristic for different processor speed ranges

1–4 1–8 1–16

P DP+ NC+ BID EBS DP+ NC+ BID EBS DP+ NC+ BID EBS

Volume rendering dataset
32 2 1.38 1.28 1.20 2 1.38 1.27 1.21 2 1.40 1.30 1.22
64 2 1.78 1.80 1.44 2 1.76 1.77 1.45 2 1.80 1.88 1.47

128 3 2.42 3.28 1.89 3 2.44 3.33 1.94 3 2.53 3.70 1.96
256 6 3.63 6.94 2.63 6 3.62 7.22 2.73 6 3.65 8.05 2.75
512 15 5.32 15.46 3.79 17 5.45 16.90 3.96 17 5.59 19.07 4.08

1024 43 7.66 32.01 5.21 46 7.77 37.55 5.79 47 7.78 43.59 5.87
2048 114 10.18 53.81 6.95 123 10.15 65.70 7.68 129 10.73 86.03 7.75

Sparse matrix dataset
32 3 1.25 2.33 1.15 3 1.26 2.30 1.18 3 1.28 2.67 1.17
64 6 1.50 5.34 1.31 6 1.52 5.77 1.34 6 1.54 5.90 1.36

128 34 1.93 24.89 1.59 37 1.93 22.48 1.66 35 2.01 23.37 1.69
256 212 2.58 122.47 2.01 217 2.69 136.83 2.17 219 2.68 147.12 2.12
512 650 3.51 277.96 2.64 649 3.65 340.06 2.89 638 3.75 389.97 2.90

1024 1,422 4.69 565.27 3.51 1,464 4.94 701.30 3.92 1,471 5.07 812.36 3.89
2048 3,136 6.02 1, 051.74 4.47 3,243 6.36 1, 301.49 5.04 3,234 6.70 1, 550.64 5.10

not change with varying processor speed range, as expected. As seen in Ta-

ble 9, notable performance variation occurs only for the BIDDING algorithm

whose running time generally increases with increasing processor speed range.

6.3 CP Experiments

Tables 10 and 11 display the results of our experiments to show the sensitivity

of the solution quality of CP problem instances to the processor orderings for

the processor speed range of 1–8. In these experiments, we find the optimal

CCP solutions for R randomly ordered processor chains of a CP instance,

and display geometric averages of the best and average load imbalance values

over number of processors. As seen in the tables, for a fixed P , the average

imbalance values almost remain the same for different values of R. Although

the best imbalance values decrease with increasing R, the decreases are quite

small, especially for large P . Moreover, for a fixed R, the relative difference

between the best and average imbalance values decreases with increasing P .

36



Table 10
Geometric averages (over P ) of percent load imbalance values for R randomly

ordered processor chains for the volume rendering dataset with the processor speed
range of 1–8

R = 10 R = 100 R = 1000 R = 10000

P best avg best avg best avg best avg

32 0.042 0.050 0.038 0.049 0.036 0.049 0.033 0.048

64 0.097 0.111 0.091 0.112 0.082 0.112 0.077 0.112

128 0.199 0.217 0.189 0.219 0.176 0.218 0.172 0.219

256 0.402 0.427 0.391 0.430 0.377 0.428 0.370 0.428

512 0.852 0.870 0.823 0.870 0.807 0.868 0.791 0.868

1024 1.787 1.849 1.750 1.856 1.727 1.855 1.719 1.855

2048 3.337 3.414 3.245 3.401 3.159 3.402 3.150 3.401

Table 11
Geometric averages (over P ) of percent load imbalance values for R randomly

ordered processor chains for the sparse matrix dataset with the processor speed
range of 1–8

R = 10 R = 100 R = 1000 R = 10000

P best avg best avg best avg best avg

32 0.133 0.483 0.104 0.656 0.068 0.588 0.057 0.534

64 0.460 0.906 0.313 0.835 0.257 0.924 0.222 0.935

128 1.304 2.526 1.216 2.484 1.124 2.462 1.020 2.573

256 10.843 11.411 10.291 11.420 10.127 11.427 9.958 11.433

512 31.153 31.694 29.385 31.776 29.078 31.747 28.922 31.735

1024 70.403 71.296 69.160 71.540 68.472 71.530 67.855 71.521

2048 147.792 150.082 146.616 150.360 143.709 150.191 142.917 150.283

These experimental findings show that processor ordering has only a minor

effect on solution quality. This is expected since the variance among processor

speeds is low, unlike the variance among task weights. Therefore, using an

exact CCP algorithm on a number of randomly permuted processor chains

can serve as an effective heuristic for the CP problem.

Table 12 displays the results of our experiments to show the sensitivity of

the solution quality of CP problem instances to the processor speed range. In

these experiments, for each CP instance, we find the optimal CCP solutions

for R = 10000 randomly ordered processor chains, and display the best load

imbalance value. As seen in Table 12, we do not observe a considerable sen-

sitivity of the solution quality of the CP problem instances to the procesor

speed range. Notable sensitivity is observed only for the language, Stanford,

37



Table 12
Best percent load imbalance values for R = 10000 randomly ordered processor

chains with different processor speed ranges

Volume rendering dataset Sparse matrix dataset

CCP instance CCP instance

Name P 1–4 1–8 1–16 Name P 1–4 1–8 1–16

blunt 32 0.029 0.053 0.051 g7jac050sc 32 0.154 0.146 0.092

64 0.125 0.134 0.117 64 0.390 0.366 0.371

128 0.207 0.267 0.241 128 1.003 1.016 0.994

256 0.628 0.559 0.528 256 2.402 2.226 2.439

512 1.055 1.193 1.157 512 5.493 5.497 5.297

1024 2.300 2.992 2.543 1024 13.187 11.727 11.829

2048 5.000 4.554 4.938 2048 28.115 28.269 26.974

comb 32 0.037 0.034 0.034 language 32 0.004 0.003 0.004

64 0.076 0.075 0.079 64 0.011 0.010 0.013

128 0.183 0.180 0.179 128 0.052 0.050 0.040

256 0.377 0.387 0.380 256 55.560 34.304 24.151
512 0.818 0.814 0.812 512 206.845 168.371 151.509

1024 1.707 1.662 1.694 1024 511.078 443.036 407.589

2048 3.561 3.508 3.522 2048 1, 122.157 977.521 915.654

post 32 0.020 0.020 0.020 mark3jac060 32 0.033 0.039 0.041

64 0.048 0.046 0.047 64 0.095 0.104 0.103

128 0.109 0.107 0.108 128 0.245 0.232 0.245

256 0.233 0.234 0.230 256 0.536 0.547 0.544

512 0.466 0.510 0.479 512 1.173 1.154 1.215

1024 0.948 1.022 0.988 1024 2.501 2.474 2.504

2048 2.240 1.957 2.043 2048 5.516 5.255 5.225

Stanford 32 0.239 0.127 0.128

64 0.960 0.889 0.525

128 35.643 12.897 14.879

256 173.373 136.019 118.176

512 439.233 371.620 341.987

1024 973.874 854.300 792.008

2048 2, 047.748 1, 793.575 1, 684.852

Stanford Berkeley 32 0.047 0.063 0.073

64 0.740 0.554 0.666

128 2.831 3.307 2.843

256 80.192 55.570 43.809

512 255.431 210.865 191.333

1024 607.837 529.020 487.961

2048 1, 315.674 1, 148.137 1, 076.473

torso1 32 0.315 0.229 0.307

64 0.771 0.639 0.677

128 1.112 2.240 1.538

256 1.890 3.087 3.004

512 4.859 6.996 8.198

1024 12.046 16.806 15.439

2048 38.975 28.495 31.079

and Stanford Berkeley sparse matrix datasets, which have high task weight

variation (i.e., large wmax/wavg value). In these datasets, load imbalance val-

ues decrease with increasing processor speed range, which possibly because the

adverse effect of tasks with large weight on load imbalance can be more easily

resolved by mapping them to the processors with larger execution speed.

38



7 Conclusions

We studied the problem of one-dimensional partitioning of nonuniform work-

load arrays with optimal load balancing for heterogeneous systems. We in-

vestigated two cases: chain-on-chain partitioning, where a chain of tasks is

partitioned onto a chain of processors; and chain partitioning, where the task

chain is partitioned onto a set of processors (i.e., permutation of the pro-

cessors is allowed). We showed that chain-on-chain partitioning algorithms

for homogenous systems can be revised to solve this partitioning problem for

heterogeneous systems, without altering computational complexities of these

algorithms. We proved that the chain partitioning problem is NP-complete,

and empirically showed that exact CCP algorithms can serve as an effective

heuristic, for the CP problem. Our experiments proved the effectiveness of

our techniques, as the exact algorithms work much better than heuristics,

and balanced work decompositions can be achieved even for high numbers of

processors.

8 Availability

The algorithms proposed in this work are implemented in Java language and

made publicly available at http://www.cs.bilkent.edu.tr/˜tabak/hetccp/.

References

[1] NASA advanced supercomputing division (NAS) dataset archive,

http://www.nas.nasa.gov/Research/Datasets/datasets.html.

[2] B. B. Cambazoglu, C. Aykanat, Hypergraph-partitioning-based remapping

39



models for image-space-parallel direct volume rendering of unstructured grids,

IEEE Transactions on Parallel and Distributed Systems 18 (1) (2007) 3–16.

[3] H.-A. Choi, B. Narahari, Algorithms for mapping and partitioning chain

structured parallel computations, in: International Conference on Parallel

Processing, 1991.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The

MIT Press and McGraw-Hill Book Company, 1989.

[5] T. Davis, University of Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices, NA Digest, vol. 97, no. 23

(June 1997).

[6] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,

J. Faik, J. E. Flaherty, L. G. Gervasio, New challanges in dynamic load

balancing, Appl. Numer. Math. 52 (2-3) (2005) 133–152.

[7] K. D. Devine, B. Hendrickson, E. G. Boman, M. M. S. John, C. Vaughan,

Zoltan: a dynamic load-balancing library for parallel applications – user’s guide,

Tech. Rep. SAND99-1377, Sandia National Laboratories (1999).

[8] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,

1990.

[9] M. P. Garrity, Raytracing irregular volume data, in: VVS ’90: Proceedings of

the 1990 workshop on Volume visualization, ACM Press, New York, NY, USA,

1990.

[10] H. Kutluca, T. M. Kurç, C. Aykanat, Image-space decomposition algorithms

for sort-first parallel volume rendering of unstructured grids, The Journal of

Supercomputing 15 (1) (2000) 51–93.

40



[11] V. J. Leung, E. M. Arkin, M. A. Bender, D. Bunde, J. Johnston, A. Lal,

J. S. B. Mitchell, C. Phillips, S. S. Seiden, Processor allocation on Cplant:

Achieving general processor locality using one-dimensional allocation strategies,

in: CLUSTER ’02: Proceedings of the IEEE International Conference on Cluster

Computing, IEEE Computer Society, Washington, DC, USA, 2002.

[12] F. Manne, B. Olstad, Efficient partitioning of sequences, IEEE Transactions on

Computers 44 (11) (1995) 1322–1326.

[13] S. Miguet, J.-M. Pierson, Heuristics for 1D rectilinear partitioning as a low

cost and high quality answer to dynamic load balancing, in: HPCN Europe

’97: Proceedings of the International Conference and Exhibition on High-

Performance Computing and Networking, Springer-Verlag, London, UK, 1997.

[14] D. M. Nicol, Rectilinear partitioning of irregular data parallel computations,

Journal of Parallel and Distributed Computing 23 (2) (1994) 119–134.

[15] J. R. Pilkington, S. B. Baden, Dynamic partitioning of non-uniform structured

workloads with spacefilling curves, IEEE Transactions on Parallel and

Distributed Systems 7 (3) (1996) 288–300.

[16] A. Pınar, C. Aykanat, Sparse matrix decomposition with optimal load

balancing, in: HIPC ’97: Proceedings of the Fourth International Conference

on High-Performance Computing, IEEE Computer Society, Washington, DC,

USA, 1997.

[17] A. Pinar, C. Aykanat, Fast optimal load balancing algorithms for 1D

partitioning, Journal of Parallel and Distributed Computing 64 (8) (2004) 974–

996.

[18] P. Shirley, A. Tuchman, A polygonal approximation to direct scalar volume

rendering, in: VVS ’90: Proceedings of the 1990 workshop on Volume

visualization, ACM Press, New York, NY, USA, 1990.

41


